

 ISSN : 2693 6356

2020 | Vol 3 | Issue 4

HANDHELD SENSORS FOR USE IN SPORTS
BIOMECHANICS

Dr. Abhi
1
,V.Balaji

2
 , G.Sujatha

3
,G.Lakshmi

4

1,2,3,4
 Associate professor,

Sreenidhi Institute of Science and Technology (SNIST) , Hyderabad,Telangana,India,

ABSTRACT:

Research in the subject of sport biomechanics aims to quantify athlete performance, provide

coaches with effective tools and instructions to use in their training, and reduce the likelihood of

injury. New technologies have made it possible to analyze athletes' motions in real time, without

impeding their performance, by equipping them with tiny, wearable sensors.

Keywords: biomechanics, sports, sport psychology, etc.

1. INTRODUCTION.

These days, technology

dictates almost every aspect of

human existence. It is vital to

meeting the needs of modern

society. Using cutting-edge

technology, we can improve

not just our capacity to keep

tabs on people's health, but

also their general level of

comfort. Here, we're using

cutting-edge technology to

detect life-threatening medical

conditions, all in the name of

getting patients the prompt

care they need.

The purpose of this study is to create a

Bluetooth-based system for continuous

health monitoring. Here, we employ

MAX30100 sensors to track the patient's

heart rate and spo2, and LM35 sensors

to monitor core body temperature.

Wireless health monitoring system built

on the Arduino platform.

Arduino is a user community, open-

source hardware and software project,

and manufacturer of microcontroller kits

for creating electronics and interactive

installations.objects that can sense and

control objects in the physical world.

The

functioning of this device is based on

the truth that the blood level circulation

during expansion and contraction of

heart which can be sensed by Heartbeat

sensor. Depending upon the rate of

circulation of blood per second the

heart beat rate per minute is calculated.

This device consists of an Arduino

microcontroller which takes the input

from the heart beat, temperature sensor

and calculates the heart rate, spo2 and

temperature of the patient. The micro

controller takes the responsibility to

sends the sensor data into the bluetooth

mobile application using HC-05

Bluetooth module. The Microcontroller

is programmed using Embedded C

language.

Motivation

An embedded system is a combination

of software and hardware to perform a

dedicated task. Some of the main

devices used in embedded products are

Microprocessors and Microcontrollers.

Microprocessors are

commonly referred to as general purpose

processors as they simply accept the

inputs, process it and give the output. In

contrast, a microcontroller not only

accepts the data as inputs but also

manipulates it, interfaces the data with

various devices, controls the data and

thus finally gives the result.

The Project

“Health Monitoring System” is an

exclusive project that can monitor the

patient’s health parameters such as

body temperature, spo2, heartbeat and

sending them into the Bluetooth mobile

application.

The main blocks of this project are:

1. Regulated power supply.

2. ARDUINO Micro controller.

3. MAX30100Heart beat, SPO2 sensor.

4. LM35Temperature sensor.

5. HC-05 Bluetooth module.

Advantages:

• Wireless transmission of medical

parameters.

• Real-time health parameters

monitoring system.

• Using Bluetooth technology.

• Patient’s health status can be

continuously monitored.

• Low power consumption.

• Efficient design.

• Higher accuracy.

Disadvantages:

 The system can’t work if the

sensor fails.

Applications:

We can implement this project in

 HOSPITALS

Methodology

Features

• High Performance, Low Power AVR®

8-Bit Microcontroller

• Advanced RISC Architecture

– 131 Powerful Instructions – Most

Single Clock Cycle Execution

– 32 x 8 General Purpose Working

Registers

– Fully Static Operation

– Up to 20 MIPS Throughput at 20 MHz

– On-chip 2-cycle Multiplier

• High Endurance Non-volatile Memory

Segments

– 4/8/16/32K Bytes of In-System Self-

Programmable Flash progam memory

(ATmega48PA/88PA/168PA/328P)

– 256/512/512/1K Bytes EEPROM

(ATmega48PA/88PA/168PA/328P)

– 512/1K/1K/2K Bytes Internal SRAM

(ATmega48PA/88PA/168PA/328P)

– Write/Erase Cycles: 10,000

Flash/100,000 EEPROM

– Data retention: 20 years at 85°C/100

years at 25°C(1)

– Optional Boot Code Section with

Independent Lock Bits

In-System Programming by On-chip

Boot Program

True Read-While-Write Operation

– Programming Lock for Software

Security

• Peripheral Features

– Two 8-bit Timer/Counters with

Separate Prescaler and Compare Mode

– One 16-bit Timer/Counter with

Separate Prescaler, Compare Mode, and

Capture

Mode

– Real Time Counter with Separate

Oscillator

– Six PWM Channels

– 8-channel 10-bit ADC in TQFP and

QFN/MLF package

Temperature Measurement

– 6-channel 10-bit ADC in PDIP

Package

Temperature Measurement

– Programmable Serial USART

– Master/Slave SPI Serial Interface

– Byte-oriented 2-wire Serial Interface

(Philips I2C compatible)

– Programmable Watchdog Timer with

Separate On-chip Oscillator

– On-chip Analog Comparator

– Interrupt and Wake-up on Pin Change

• Special Microcontroller Features

– Power-on Reset and Programmable

Brown-out Detection

– Internal Calibrated Oscillator

– External and Internal Interrupt Sources

– Six Sleep Modes: Idle, ADC Noise

Reduction, Power-save, Power-down,

Standby,

and Extended Standby

• I/O and Packages

– 23 Programmable I/O Lines

– 28-pin PDIP, 32-lead TQFP, 28-pad

QFN/MLF and 32-pad QFN/MLF

• Operating Voltage:

– 1.8 - 5.5V for

ATmega48PA/88PA/168PA/328P

• Temperature Range:

– -40°C to 85°C

• Speed Grade:

– 0 - 20 MHz @ 1.8 - 5.5V

• Low Power Consumption at 1 MHz,

1.8V, 25°C for

ATmega48PA/88PA/168PA/328P:

– Active Mode: 0.2 mA

– Power-down Mode: 0.1 μA

– Power-save Mode: 0.75 μA

(Including 32 kHz RTC)

Fig:

Overview

The ATmega48PA/88PA/168PA/328P

is a low-power CMOS 8-bit

microcontroller based on the AVR

enhanced RISC architecture. By

executing powerful instructions in a

single clock cycle, the

ATmega48PA/88PA/168PA/328P

achieves throughputs approaching 1

MIPS per MHz allowing the system

designer to optimize power consumption

versus processing speed.

The AVR core combines a rich

instruction set with 32 general purpose

working registers. All the 32 registers

are directly connected to the Arithmetic

Logic Unit (ALU), allowing two

independent registers to be accessed in

one single instruction executed in one

clock cycle. The resulting architecture is

more code efficient while achieving

throughputs up to ten times faster than

conventional CISC microcontrollers.

The ATmega48PA/88PA/168PA/328P

provides the following features: 4K/8K

bytes of In-System Programmable Flash

with Read-While-Write capabilities,

256/512/512/1K bytes EEPROM,

512/1K/1K/2K bytes SRAM, 23 general

purpose I/O lines, 32 general purpose

working registers, three flexible

Timer/Counters with compare modes,

internal and external interrupts, a serial

programmable USART, a byte-oriented

2-wire Serial Interface, an SPI serial port,

a 6-channel 10-bit ADC (8 channels in

TQFP and QFN/MLF packages), a

programmable Watchdog Timer with

internal Oscillator, and five software

selectable power saving modes. The Idle

mode stops the CPU while allowing the

SRAM, Timer/Counters, USART, 2-

wire Serial Interface, SPI port, and

interrupt system to continue functioning.

The Power-down mode saves the

register contents but freezes the

Oscillator, disabling all other chip

functions until the next interrupt or

hardware reset.

In Power-save mode, the asynchronous

timer continues to run, allowing the user

to maintain a timer base while the rest of

the device is sleeping. The ADC Noise

Reduction mode stops the CPU and all

I/O modules except asynchronous timer

and ADC, to minimize switching noise

during ADC conversions. In Standby

mode, the crystal/resonator Oscillator is

running while the rest of the device is

sleeping. This allows very fast start-up

combined with low power consumption.

The device is manufactured using

Atmel’s high density non-volatile

memory technology. The On-chip ISP

Flash allows the program memory to be

reprogrammed In-System through an

SPI serial interface, by a conventional

non-volatile memory programmer, or by

an On-chip Boot program running on the

AVR core. The Boot program can use

any interface to download the

application program in the Application

Flash memory. Software in the Boot

Flash section will continue to run while

the Application Flash section is updated,

providing true Read-While-Write

operation. By combining an 8-bit RISC

CPU with In-System Self-Programmable

Flash on a monolithic chip, the Atmel

ATmega48PA/88PA/168PA/328P is a

powerful microcontroller that provides a

highly flexible and cost effective

solution to many embedded control

applications.

The ATmega48PA/88PA/168PA/328P

AVR is supported with a full suite of

program and system development tools

including: C Compilers, Macro

Assemblers, Program

Debugger/Simulators, In-Circuit

Emulators, and Evaluation kits.

Comparison Between ATmega48PA,

ATmega88PA, ATmega168PA and

ATmega328P .

The ATmega48PA, ATmega88PA,

ATmega168PA and ATmega328P differ

only in memory sizes, boot loader

support, and interrupt vector sizes. Table

2-1 summarizes the different memory

and interrupt vector sizes for the three

devices.

ATmega88PA, ATmega168PA and

ATmega328P support a real Read-

While-Write Self-Programming

mechanism. There is a separate Boot

Loader Section, and the SPM instruction

can only execute from there. In

ATmega48PA, there is no Read-While-

Write support and no separate Boot

Loader Section. The SPM instruction

can execute from the entire Flash.

Implimentation

The project “Health Monitoring

System” was designed a continuous

patient health monitoring system using

Bluetooth technology. This project

makes a use of MAX30100 (heartbeat &

oxygen), LM35 temperature, Bluetooth

module. The main controlling device of

the project is Arduino UNO

microcontroller. Arduino will

continuously read the heartbeat and spo2

value through MAX30100 and

temperature value from LM35

temperature sensor will be sent to the

user android mobile application via HC-

05 bluetooth module. To achieve this

task microcontroller loaded program

written in embedded C language.

This project is implemented using

following software’s:

 Arduino IDE Studio Compiler -

for compilation part

4.1 Arduino IDE Compiler:

This instructable adds to any of the

Arduino on a Breadboard instructables.

1. We need a microcontroller with a pre-

loaded Bootloader, or must load your

own

2. Not all ATmega328’s are equal

(A bootloader, very simply, is a

programme that sits on the chip and

manages the upload of your sketches

onto the chip)

Procedural steps for compilation,

simulation and dumping:

Compilation and simulation steps:

Step 1: Parts

1 x Arduino on a Breadboard

1 x Arduino UNO

Connecting Wires

Arduino IDE installed on your PC

Step 2: The Approach

We use the Arduino UNO to bootload

the ATmega328 that is sitting on the

Arduino-on-a-Breadboard. This is fairly

straightforward having an

ATmega328P-PU, but needs an extra

step for an ATmega328-PU.

Step 3: Program your Arduino UNO as

an ISP

Ensure your UNO is selected under the

Boards menu option, and upload the

sketch.

Step 4: Connect your ATmega328

We need to program the Arduino UNO

to act as an ISP (In-System

Programmer), so that it can burn the

bootloader onto the Breadboard chip.

1. Open the Arduino IDE

2. Open the ArduinoISP sketch

(under File, Examples)

3. If you’re using version 1.0 of the

IDE:

Search for void heartbeat and

change the line that reads:

delay(40);

to

delay(20);

Connect your UNO to the PC, making

sure it’s not connected to the Arduino on

a Breadboard.

Now connect your ATmega to your

UNO as follows:

 UNO 5v ---> ATmega pin 7

(VCC)

 UNO GND ---> ATmega pin 8

(GND)

 UNO pin 10 ---> ATmega pin 1

(RESET)

 UNO pin 11 ---> ATmega pin 17

(MOSI)

 UNO pin 12 ---> ATmega pin 18

(MISO)

 UNO pin 13 ---> ATmega pin 19

(SCK)

In your Arduino folder, find the

subfolder.\hardware\tools\avr\etc

1. Make a backup copy of the file:

avrdude.conf

2. Open the file avrdude.conf in a

text editor

3. Search for: “0x1e 0x95 0x0F”

(this is the ATmega328P

signature)

4. Replace it with: “0x1e 0x95 0x14”

(this is the ATmega328 signature)

5. Save the file

6. Restart the Arduino IDE

7. Continue with the rest of the

steps in the instructable, and

once bootloading is complete

restore the backup copy you

made.

In the Arduino IDE, from the Tools

menu:

 under the Board option choose

Arduino UNO

 under the Serial Port option

ensure the correct port is selected

 under the Programmer option

choose Arduino as ISP

To burn the Bootloader, choose Burn

Bootloader from the Tools menu

You should see a message “Burning

bootloader to I/O Board (this may take a

minute)"

Once the bootloader has been burned, a

message of confirming the success gets

displayed.

”Congratulations: You're now ready

to load sketches onto your Arduino on

a breadboard!”

Conclusion:

Its design incorporates functionality

from all of the deployed hardware

components. Each module's inclusion

and placement has been meticulously

planned to optimize performance.

Second, thanks to developing technology

and cutting-edge integrated circuits, the

idea has been realized. Therefore, the

project's design and testing phases have

been fruitful.

References

1. K. Natarajan, B. Prasath, P. Kokila.

"Smart Health Care system using

Internet of Things." Journal of Network

communications and Emerging K.

Natarajan, B. Prasath, P. Kokila. "Smart

Health Care system using Internet of

Things." Journal of Network

communications and Emerging

Technologyes, 2013: Vol6. Issue 3.

2. Zhang, R.S.H. Istepanaian and T. T.

"Guest Editorial introduction the special

section: 4G health - the long term

evolution of m-health." IEEE Trans Inf.

Tech Biomed, 2012: vol.16 no.1 pp 1-5.

3. L. Wang, G.Z. Yang, J. Huang ,J.

Zhang, L. Yu, Z. Nie. "A Wireless

biomedical signal interface system on

chip for body sensors networks"." IEEE

Trans. Biomed, Circuits syst, 2010:

vol.4No.2 pp112-117.

4. Daeilkwon, Melida, hodkiew. "IoT-

Based Prognostics and systems Health

Management for Industrial

Applications." IEEE Special secion on

Trends and Advances for Ambient

intellligence with Internet of Things(IoT)

systems, 2016.

5. L.Wing. "GE's big bet on data and

analytics in proc." MIT Sloan Manage

Rev,, 2016: 1-6.

6. D.J.Patil, T.H. Davenport and. "Data

Scientist: The Sexiest job of 21st

century." Harvard Bus Rec, 2012.

7. Court, D. Barton and D. "Advanced

Analytics work for you." Harvard Bus

Rev, 2012.

8. M. Gorlatova, J. Sarik, G. Grebla M.

Cong, I. Kymissis and G. Zuddman.

"Movers and Shakers; Kinetic energy

harvesitng for Interntet of Things." IEEE

J. Sel Areas Communications, 2015:

1624-1629

9. R. Drath and A. Horch. "Industrie 4.0

Hit or Hype [Industry forumm]." IEEE

Ind. Electro . Mag., 2014: Vol 8. No2.

PP 56-58.

10. S. cheng, M.H, Azarian and M.

Pecht. "Sensor system for Prognostics

and health Mangement." Sensors, 2010:

vol.10 no.6

